

Transição Energética em Cabo Verde Redes Inteligentes e Armazenamento de Energia

Rito Évora DNICE

Aquecimento Global e Mudanças Climáticas

- Cerca de 2/3 das Emissões Globais de Gases de Efeito de Estufa derivam da produção e Consumo de Energia;
- Necessidade de transformação da dependência de combustíveis fosseis para a neutralidade carbónica até à segunda metade deste seculo;
- A aceleração do desenvolvimento das Energias Renováveis e a promoção da Eficiência Energética constituem fatores chaves;

Decentralisation **Decarbonisation** Digitalisation Moving from conventional Reduce the CO2 emissions Installation of sensors and actuators for power centralized top-down from power generation. Increase the integration of power systems towards a system monitoring and decentralized model. renewable energy. control. High presence of Increase the energy Management of collected data and use for business Distributed Energy efficiency at consumption Resources. level. application (e.g, optimal • Importance presence of Electrification of the operation and planning, distributed microgrids for security improvement, energy consumption. rural electrification and quality of service, etc.). Use of new IT and reliability improvement. communications technologies to develop new services in the power system.

Figure 2.4 Six categories of flexibility measures

Table 9. Main challegnes and best practices in European islands according to Eurlectric report

Best Smart Grid practices Main challenges in islands Energy dependence (generation mainly Energy storage: several pilots in different from fossil fuels) islands Lack of economies of scale in power Distributed renewable generation + DERs production Management System to maximize RES Operational energy constraints and small integration markets due to isolated nature Smart net metering for promotion of small Additional challenges to decarbonise scale PV technology Power generation plants have limited size Electrical Mobility Need of integrate renewable energies Interconnections between islands in specific cases → need of business cases without jeopardize the security of the Islands environments are interesting for power system testing Smart Grid pilots (due to reduced size and particular condition)

Table 10. Value proposition of Smart Grids for power sector in Cabo Verde

Objective in Cabo Verde	Smart Grid benefits
Increase electricity from renewables	 Advanced monitoring and control solutions to increase the integration of renewable generation in the system,
Trom renewables	Introduce flexibility for enhanced system operation under presence of variable non-controllable renewable generation, such as storage.
2. Guarantee stability and security	 Real-time monitoring and detection of risking situation for the system at different voltage levels, and implementation of automatic operations to correct them,
	 Remote operation of controllable solutions to guarantee network security.
	Benefit demand management programs for supply and demand balancing and peak shaving.
3. Reduce losses	Advanced Metering infrastructure for accurate measurement
	 Monitoring and data analytics for identification of commercial losses Integrated AMI-billing system for commercial loss reduction.
4. Generation & operation cost	 Optimal dispatch of the generation units, enhanced by the presence of remote control, advanced forecast algorithms, flexible resources),
reduction	 Reduce the amount of reserves for secure operation of the system and, therefore, their associated cost.
	Grid upgrade investment deferral by energy flow and DER management
5. Facilitate the	Introduce monitoring and control management systems for secure
integration of	massive integration of DERs into the system,
Distributed Energy	Aggregation platforms for the dispatch of DERs, taking advantage of the
Resources	added value of the aggregated services .

Objective in Cabo Verde	Smart Grid benefits
6. Increase the efficiency of the electricity consumption	 Facilitate the integration level of auto-consumption in customers, Customer consumption pattern correction, Provide information systems for an efficient consumption management, for example, smart lighting, smart building, customer web portal, etc
7. Improve the quality of supply of customers	 Reduction of interruption times required to identify, isolate and restore the supply Advanced protection systems to identify in probable components failures. Enhanced voltage and frequency control mechanisms.
8. ICT and Cyber Security enhancing	 Communication infrastructure and link management for distributed intelligence. Facilitation of new business functionalities Guarantee the cyber security of the ICT links and systems for Smart Grids
9. Mobility electrification	 Enable efficient management of electromobility charging Facilitate the tariffs and information systems for customer participation

O Programa Nacional para a Sustentabilidade Energética

Tem como estratégia de longo prazo:

Fazer a transição para um setor energético, seguro, eficiente e sustentável, sem dependência de combustíveis fosseis e garantindo o acesso universal e a segurança energética.

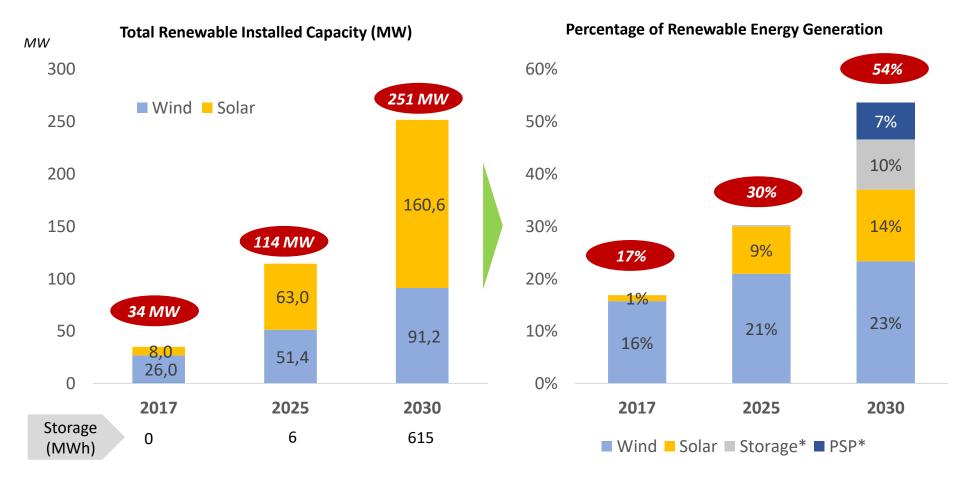
PROGRAMA NACIONAL PARA A SUSTENTABILIDADE ENERGÉTICA (PNSE II)

Atuais Eixos de Intervenção

Reforço Institucional e Melhoria do Ambiente de Negócios

Novos Eixos

Fomento Empresarial P&D


Inclusão e Equidade Género Investimento em Infraestruturas Estratégicas

Reforma da Estrutura Organizacional do Mercado Energético

Desenvolvimento das Energias Renováveis

Promoção da Eficiência Energética

^{*} Storage and PSP % represents part of renewable generation stored and discharged through inverters or turbine

INVESTIMENTOS EM CURSO

	CAPACIDADE PRODUÇÃO ER (MW)		ARMAZENAGEM		
					CAPACIDADE
ILHA	SOLAR	EÓLICA	TOTAL	POTÊNCIA (MW)	ARMAZENAGEM(MWH)
SANTO ANTÃO	1,2		1,2	1,4	2
SÃO VICENTE	5		5	8	8
SÃO NICOLAU	0,4		0,4	0,5	1
SAL	5		5	5	5
BOA VISTA	5		5	6	6
MAIO	0,4		0,4	0,5	1
SANTIAGO	20	13	33	30	160
FOGO	1,3		1,3	2	2
BRAVA	1,3		1,3	1	6,6
TOTAL	39,6	13	52,6	53,4	192,1

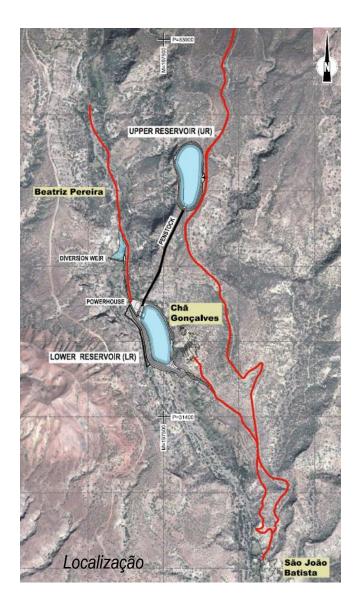
CV Smart Grid Road Map - priority projects

Vision

"A digital, distributed and reliable grid for efficient and secure operation of power system and energy market, supporting sustainable energy transition and customer empowerment."

Objective	Short term (2021)	Medium term (2025)	Long term (2030)	
1. Renewable	Advanced RES forecasting proced			
share increase	ESS management module implementation in SCADA/EMS			
2. System	TOU tariff revision and implemen	ntation (data collection and billing)		
stability	Market revision for RES and ESS participation in Anciliary services	Voltage VAR optimisation		
3. Loss		MI) Deoployment	Advanced Outage Management	
reduction	Unified Billing system and customer account migration	Data Analytic Fraud Pevention	System	
4. Gen. & Op. cost reduction	DR program implementation	DSM program implementation	Advance Asset Management System Implementation	
5. On-grid DER Management	Auto-generation Connection Procedure (Tech. Assessment) DER module in SCADA/DMS	Demand and Generation Aggregation Platform		
6. Energy	Demand Management p	program (DR and DSM)	O (Building O to 10 to	
efficiency	Customer campaing &Web Portal		Smart Building Control System	
7. Quality of supply		edure, measure and register and AMI data)		
8. ICT and CS	IT dept. re-structuring	Security policy development and monitoring		
Enhancing		Communication requirement	assessment and assignation	
9. E-Mobility		Public EV charging infra	strature Implementation	
9. L-Woomity		G2V module implementation		

A PSP de Santiago Ribeira de São João, a cerca de 20 km a oeste da cidade da Praia.

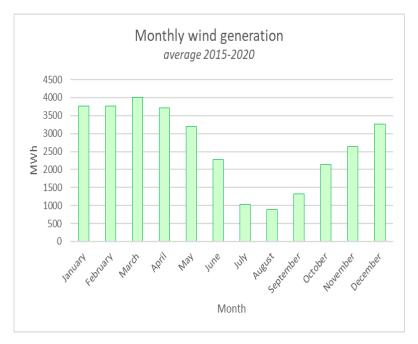


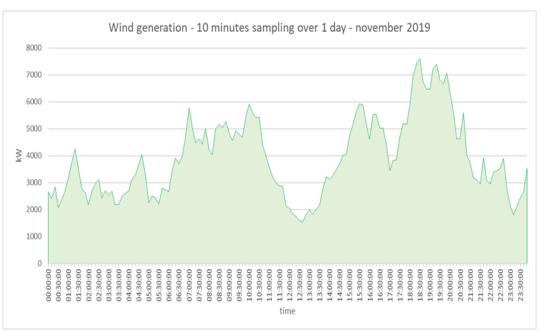
> Características principais do aproveitamento:

Parâmetros técnicos principais	Unidade	Quantidade
Potência instalada	MW	20
Tempo de turbinamento	h	7.64
Energia produzida	MWh	152.9
Energia consumida	MWh	226.0
Eficiência do ciclo da PSP	%	67.5

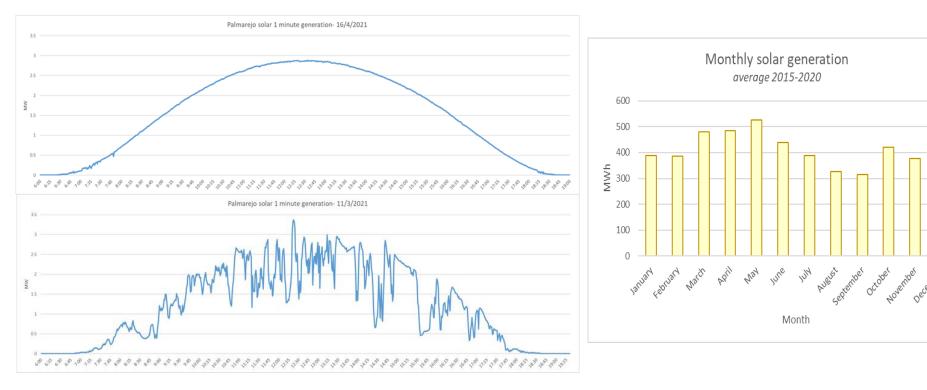
Tipo de obra	Unidade	Quantidade
Reservatório superior		
Capacidade de armazenamento	hm³	0.360
Nível de água máximo (h=8,0 m)	m	301.5
Área inundada	m^2	45000
Reservatório inferior		
Capacidade de armazenamento	hm³	0.320
Nível de água máximo (h=8,0 m)	m	88.5
Área inundada	m^2	40000
Conduta forçada – Troço superior		
Diâmetro	m	2.0
Comprimento	m	462
Conduta forçada – Troço inferior		
Diâmetro	m	1.6
Comprimento	m	292

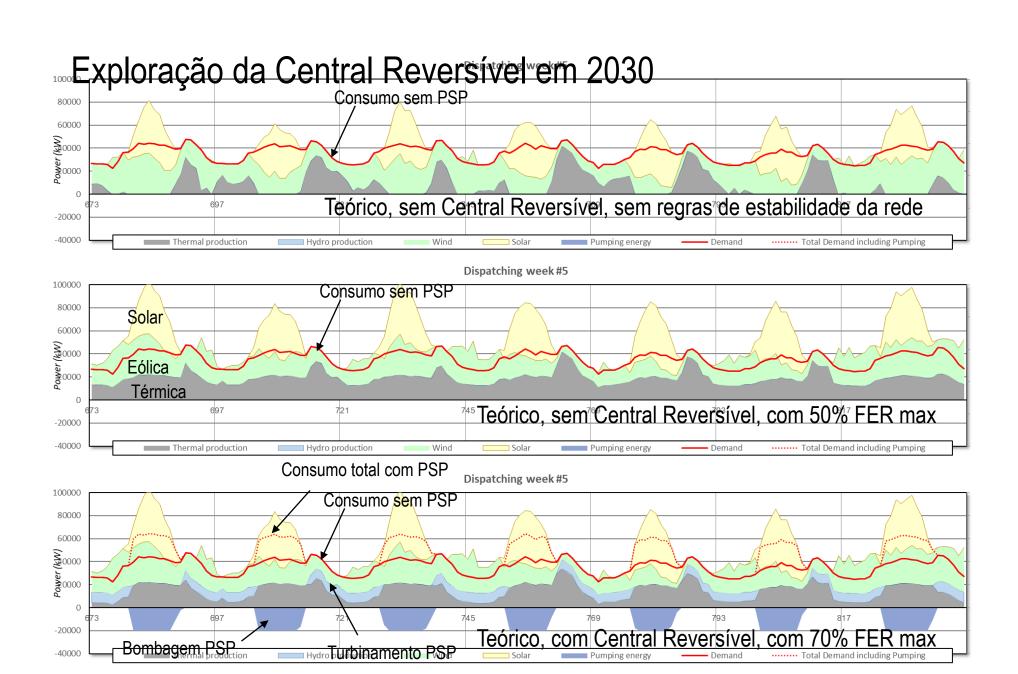
Feasibility Study

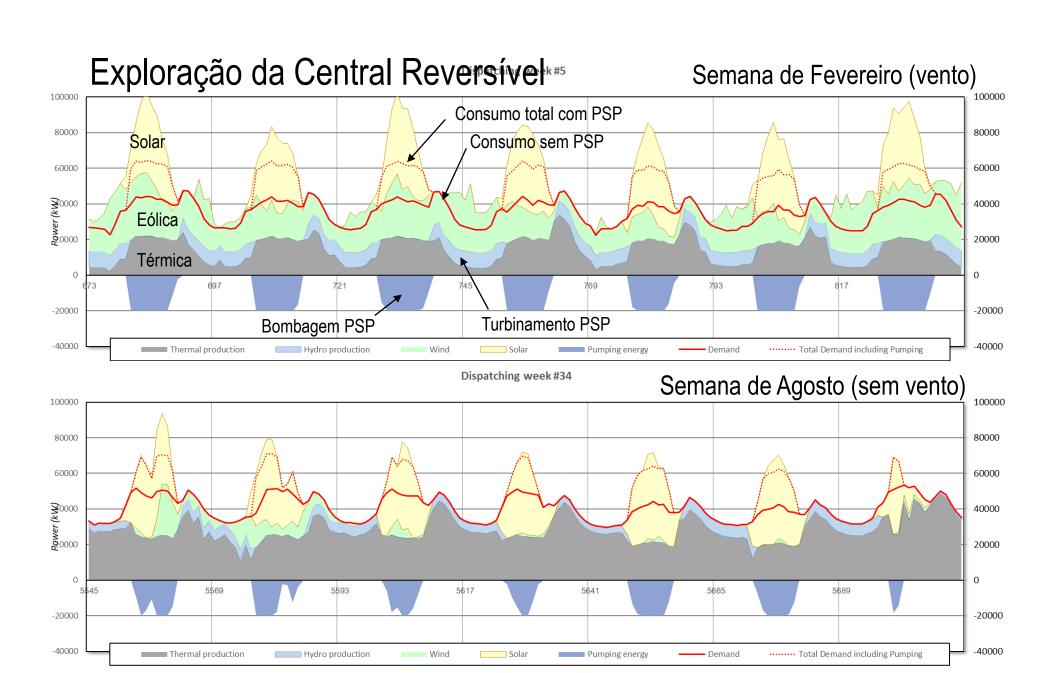

- INCEPTION REPORT
- D1&2 DETAILED GEOLOGICAL AND GEOTECHNICAL ASSESSMENT REPORT
- D3 HYDROLOGICAL (WATER AVAILABILITY) ASSESSMENT
- D4 ASSESSMENT OF THE ENVIRONMENTAL AND SOCIAL CHARACTERISTICS AND RISKS
- D5 SITE ASSESSMENT REPORT
- D6 STUDY OF ALTERNATIVE LAYOUTS
- D7A GRID CONNECTION AND DYNAMIC STABILITY STUDY
- D7B PSP OPERATION AND REMUNERATION MODEL
- D7C ENGINEERING AND ECONOMIC DESIGN
- D8 PRELIMINARY ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT
- D9 FINANCIAL ANALYSIS AND IMPLEMENTATION STRATEGY



Configuração espacial do sistema elétrico em 2030


Produção de energia eólica




- Produção com variação sazonal muito relevante
- Variações de curto prazo significativas

Produção de energia solar

- Menos sazonal do que a energia eólica
- A geração é, de um modo geral, bastante previsível, mas
- Em 30% dos dias a produção atual é muito irregular com variações superiores a 25% de um minuto para o outro (situação não expectável)

Serviços típicos de uma Central de transferência de energia

Serviços de Balanço de Energia

Deslocamento temporal da energia elétrica (arbitragem)

Capacidade de potência

Serviços Auxiliares

Regulação

Reservas girantes, não girantes e suplementares

Controlo da Tensão

"Black start"

Serviços de Infraestruturas de Transmissão

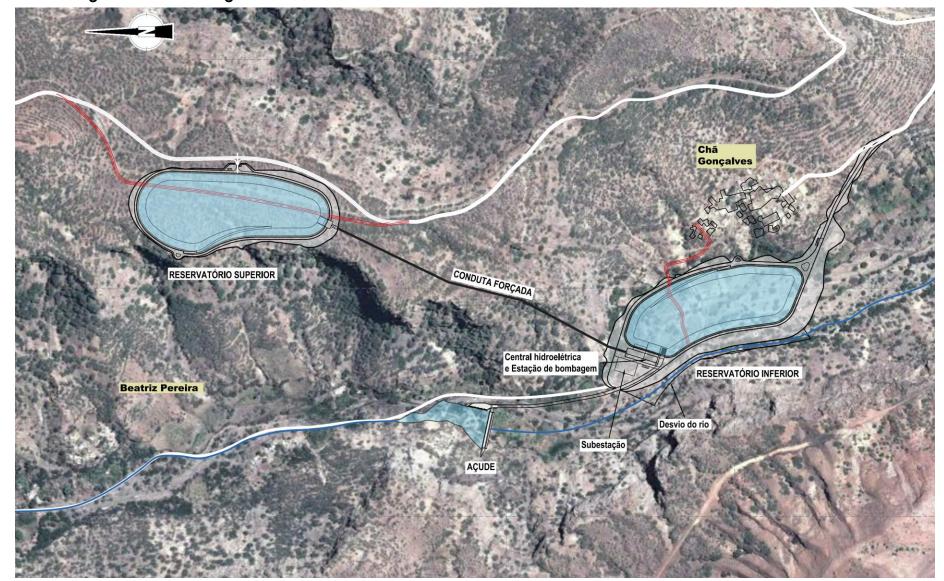
Diferimento da atualização da transmissão

Alivio do congestiona-mento da transmissão

Gestão Energética de Clientes

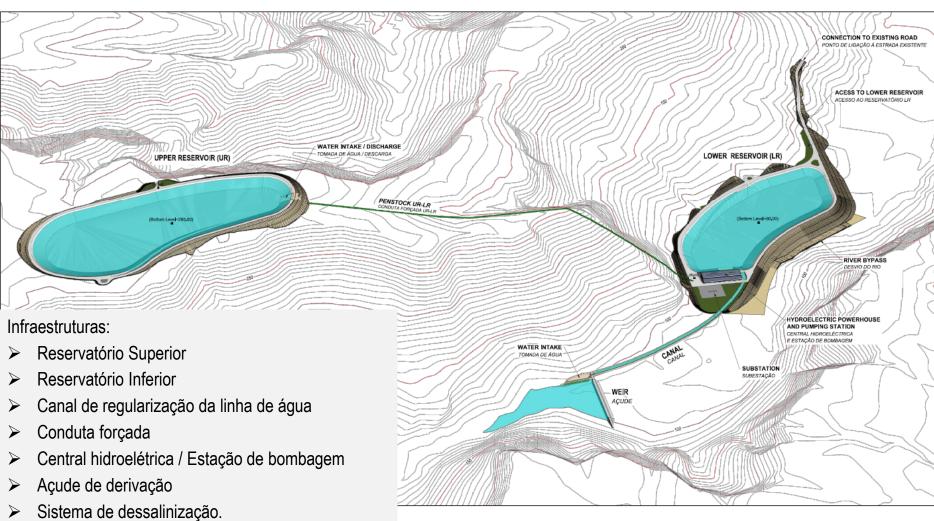
Qualidade Energética Fiabilidade energética

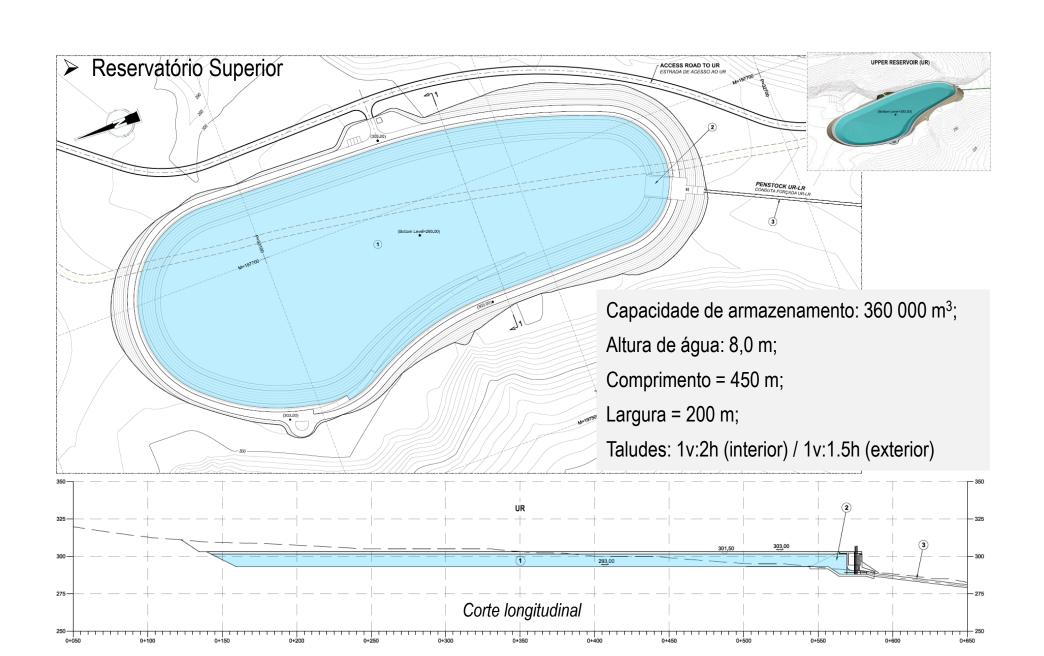
Serviços de rede da Central de transferência de energia

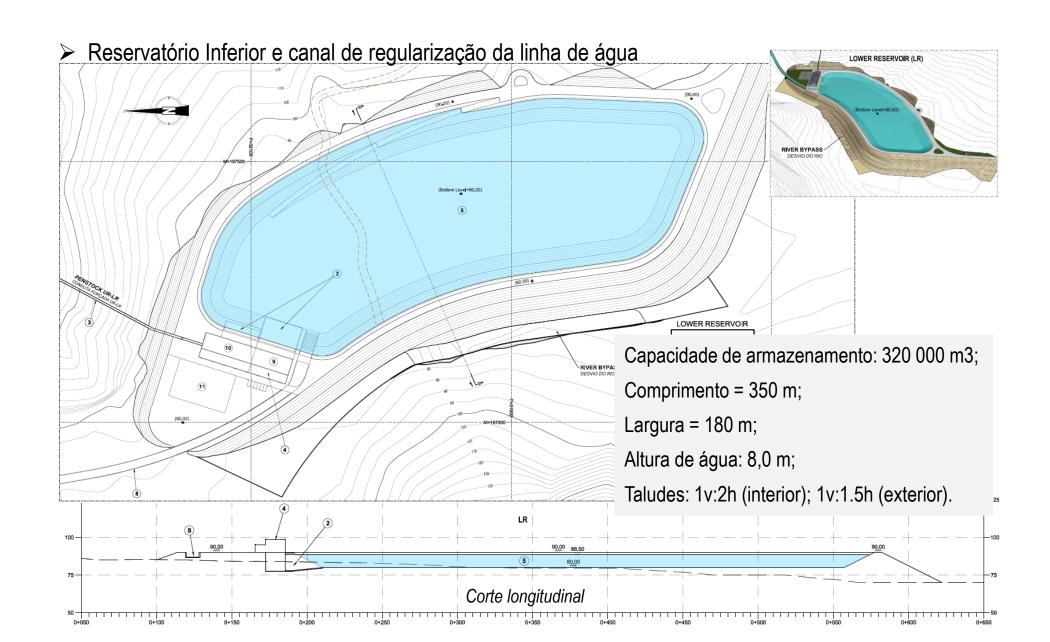

TIPO DE SERVIÇO	REQUISITOS DA PSP
Armazenamento de energia (arbitragem)	- Reserva de energia minima de 150 MWh
Capacidade de Potência	- Capacidade firme: 20MW
	- Disponibilidade: >95% entre manutenções principais
	- Capacidade de participar na geração (as per Grid code)
Reserva Primária	- Capacidade de participar no consume de energia
	- Queda de 4 a 6% em modo de turbinamento
Arranque	- Entre velocidade em vazio e carga total, em 10s
	- Entre turbina parada e geração a plena carga em menos de 2 minutes
Reserva Secundária / Reserva Rápida	- Entre bombas paradas e pleno consumo em menos de 3 minutes
Napida	- Alteração de modo de funcionamento em menos de 2 minutos
Controlo de Tensão	- De acordo com o Código da Rede

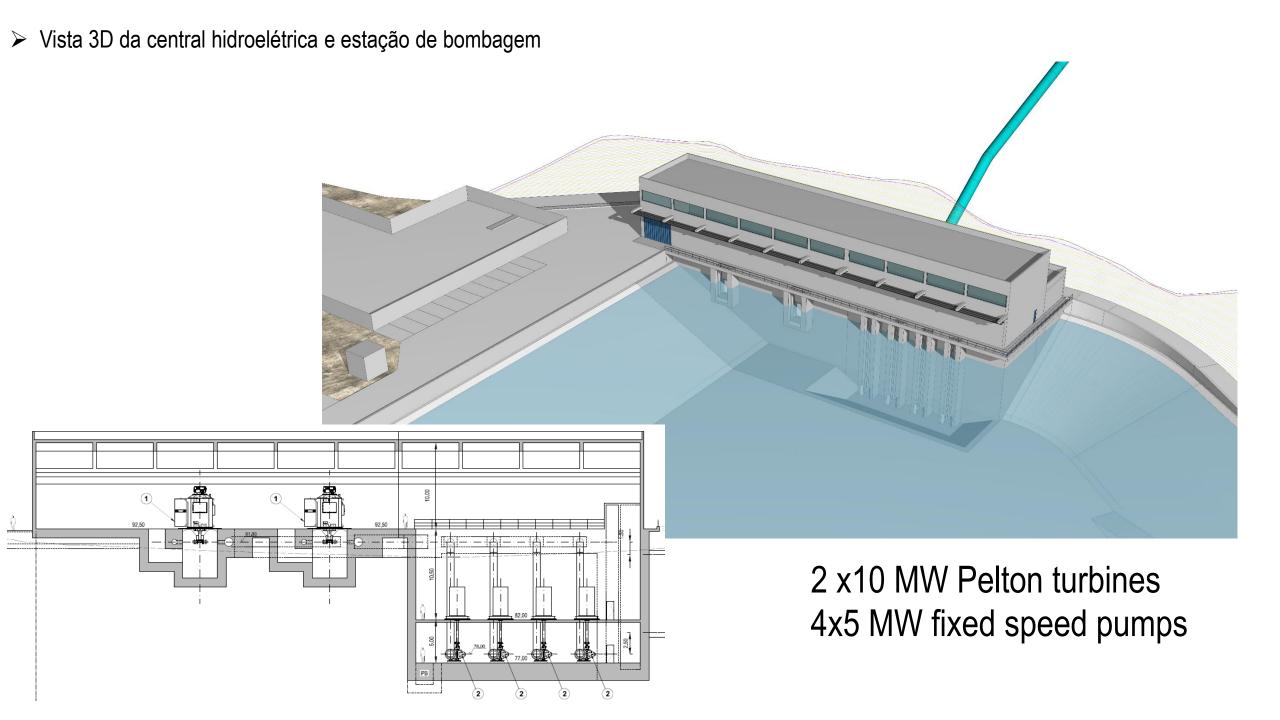
Balanço Energético Anual de Armazenamento Bombeado fonte: Dados do Estudo de Viabilidade Coba/Artelia

Parâmetro	Quantidade
Excedente de RE (eólica e fotovoltaica)	57 GWh pa
usado para bombeamento	
Despacho de energia proveniente do	38.5 GWh pa
armazenamento bombeado	
Energia térmica deslocada da rede pelo	38.5 GWh pa
PSH	
Redução no consumo de óleo diesel	22%

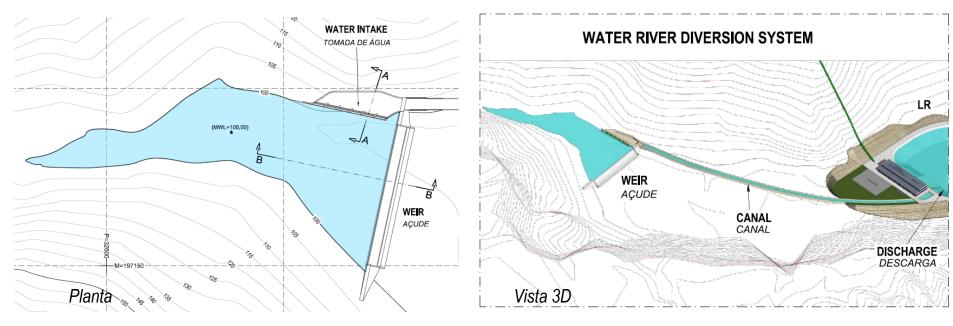

Planta geral sobre imagem satélite

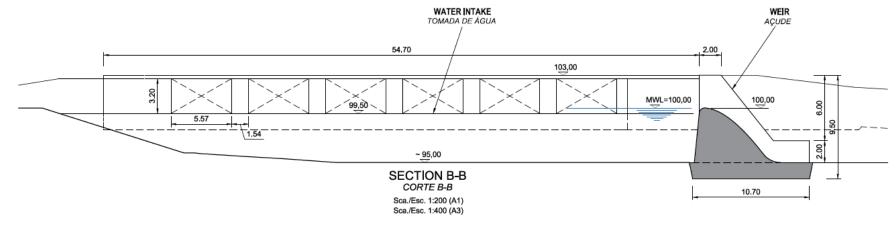



➤ Vista Geral 3D do Aproveitamento


Estradas de acesso

Linha de transmissão de energia





> Açude de derivação

Obrigado!

rito.evora@mice.gov.cv

